

The West Milford Township Municipal Utilities Authority

179 Cahill Cross Road Suite 202. West Milford, New Jersey 07480 (973) 506-7330 • Fax (973) 506-7348 • mua@westmilford.org

West Milford Township 1480 Union Valley Road West Milford, NJ 07480 Attn: Clerk's Office

RECEIVED

MAY 31 2012

TOWNSHIP CLERK TWP. OF WEST MILFORD

Enclosed please find the Consumer Confidence Report for water quality 2011. Please post for public to review. If you have any questions please feel free to contact the MUA office at 973-506-7330.

Administrator

West Milford MUA – Birch Hill Park (PWSID#: NJ1615001) Year 2011 Annual Water Quality Report

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Birch Hill Park's drinking water surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Birch Hill Park monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Birch Hill Park draws its water from 4 groundwater wells. These wells utilize corrosion control, Radionuclides removal, and disinfection in the treatment process. It has 52 service connections and serves approximately 180 people per day.

Results of Monitoring For Contaminants in Drinking Water

	-	uits of Worldoning r	The state of the s			Datastial Casses
<u>Contaminant</u>	<u>Units</u>	<u>MCL</u>	MCLG	<u>Level</u>	<u>Range</u>	Potential Source
				<u>Detected</u>		
Total Coliforms	Present/	0	0	<1	0 of 12	Leaking septic
					samples	system, runoff from
	Absent				were positive	streams
(0000)		4.2 (Action	1.3	0.1 (90 th	0 of 5	Corrosion of
Copper (2009)	ppm	1.3 (Action	1.0		samples	household
		Level)		Percentile)	exceeded	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
					action limit	plumbing.
L == 4 (2000)	l nnh	15 (Action Level)	0	<2.0 (90 th	0 of 5	Corrosion of
Lead (2009)	ppb	15 (Action Level)	U	Percentile)	samples	household
	·			reicenne)	exceeded	plumbing.
					action limit	plantibing.
Nitrate	nnm	10	10	0.6	1 Sample	Runoff from fertilizer
Miliale	ppm	10	10	0.0	Campio	use; leaching from
						septic tanks; erosion
						of natural deposits.
VOCs						Leaking tanks,
Methyl tert- Butyl Ether	ppb	70	70	0.9	1 Sample	solvents, etc.
,					•	
Trihalomethanes	ppb	80	NA	8	1 Sample	Disinfectant
(THMs) (2009)						Byproducts
Haloacetic Acids	ppb	60	NA	3	1 Sample	Disinfectant
(HAAs) (2009)						Byproducts
Chromium (2010)	ppb	100	100	5	1 Sample	Discharge from steel
						and pulp mills; erosion of natural deposits
			145516		0.04 0.00	Water additive used to
Chlorine Residual	ppm	MRDL	MRDLG	0.30	0.01 – 2.20	control microbes.
		4	4			

Other Substances:

These are considered Secondary Contaminants and are not considered a health risk. They can affect taste,

odor or color of your drinking water.

Contaminant	<u>Units</u>	<u>Detected Limits</u>	<u>Range</u>	Secondary MCL
Sodium (2009)	ppm	35	NA	50
Sulfate (2009)	ppm	20	NA	250

Health Effects of Detected Contaminants:

<u>Chlorine:</u> Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

<u>Chromium:</u> Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.

<u>Coliform Bacteria/E-Coli:</u> Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Haloacetic Acids:</u> Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Methyl-T-Butyl Ether (MTBE): is a member of a group of chemicals commonly known as fuel oxygenates. Oxygenates are added to fuel to increase its oxygen content. There are no data on the effects on humans of drinking MtBE-contaminated water. In laboratory tests on animals, cancer and non-cancer effects occur at high levels of exposure. These tests were conducted by inhalation exposure or by introducing the chemical in oil directly to the stomach. The tests support a concern for potential human hazard. Because the animals were not exposed through drinking water, there are significant uncertainties about the degree of risk associated with human exposure to low concentrations typically found in drinking water. USEPA has not set a national standard for MTBE. The NJDEP has established a Maximum Contaminant Level at 70 ppb.

<u>Nitrate</u>: Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

<u>Trihalomethanes:</u> Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550.

The source water assessment performed on Birch Hill Park's well-water sources determined the following:

Source Name	<u>Pathogens</u>	<u>Nutrients</u>	<u>Pesticides</u>	<u>VOCs</u>	<u>Inorganics</u>	Radio- nuclides	<u>Radon</u>	<u>DBPs</u>
	Ratings L / M / H							
4 Wells*	4	3 / 1	4	4	4	4	2 / 2	4

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. Birch Hill Park does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- 90th Percentile: 90% of samples are equal to or less than the number in the chart.
- Action Level: The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- RMCL or Recommended Maximum Contaminant Level: recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- <u>- ppb or parts per billion:</u> Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- <u>- ppm or parts per million:</u> Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- NR: Not regulated
- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- EPA: Environmental Protection Agency.
- CDC: Centers for Disease Control
- VOC: Volatile Organic Contaminant

Report prepared for WMMUA Birch Hill Park by:

Agra

Environmental & Laboratory Services 90 1/2 West Blackwell Street Dover, NJ 07801 P: (973) 989-0010 F: (973) 989-0156

West Milford MUA – Greenbrook System (PWSID#: NJ1615002) <u>Year 2011 Annual Water Quality Report</u>

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Greenbrook System's drinking water surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Greenbrook System monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Greenbrook System draws its water from 3 groundwater wells. These wells utilize corrosion control, disinfection, and iron & manganese removal in the treatment process. It has 188 service connections and serves approximately 600 people per day.

Results of Monitoring For Contaminants in Drinking Water

Contaminant	Units	MCL MCL	MCLG	Level	Range	Potential Source
				Detected		
Total Coliforms	Present/ Absent	0	0	<1	0 of 14 samples were positive	Leaking septic system, runoff from streams
Copper	ppm	1.3 (Action Level)	1.3	0.69 (90 th Percentile)	2 of 42 samples exceeded action limit	Corrosion of household plumbing.
Lead	ppb	15 (Action Level)	0	2 (90 th Percentile)	0 of 42 samples exceeded action limit	Corrosion of household plumbing.
Nitrate	ppm	10	10	2	3 Samples	Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits.
Barium (2009)	ppb	2000	2000	2	3 Samples	Naturally occurring Ore
Chlorine Residual	ppm	MRDL 4	MRDLG 4	0.24	0.01 – 0.72	Water additive used to control microbes.

Other Substances:

These are considered Secondary Contaminants and are not considered a health risk. They can affect taste, odor or color of your drinking water.

<u>Contaminant</u>	<u>Units</u>	<u>Detected Limits</u>	<u>Range</u>	Secondary MCL
Sodium (2009)	ppm	31	23-38	50
Sulfate (2009)	ppm	13	5-22	250

Health Effects of Detected Contaminants:

<u>Barium</u>: Barium is a naturally occurring ore used in a variety of manufactured goods. The EPA has found that in some people, short exposure to Barium in exceedence of the MCL can cause gastrointestinal disturbances and muscle weakness. Long term exposure to barium at levels above the MCL may cause high blood pressure.

<u>Chlorine:</u> Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

<u>Coliform Bacteria/E-Coli:</u> Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Lead:</u> If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Nitrate:</u> Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550

The source water assessment performed on the Greenbrook System's well-water sources determined the following:

Source Name	<u>Pathogens</u>	<u>Nutrients</u>	<u>Pesticides</u>	VOCs	<u>Inorganics</u>	Radio- nuclides	Radon	<u>DBPs</u>
-	Ratings L / M / H	Ratings L/M/H	Ratings L / M / H	Ratings L/M/H	Ratings L / M / H			
3 Wells*	2 / 1	1 / 2	3	1 2	3	3	3	3

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. Greenbrook System does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- 90th Percentile: 90% of samples are equal to or less than the number in the chart.
- Action Level: The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- RMCL or Recommended Maximum Contaminant Level: recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- <u>- ppb or parts per billion:</u> Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- ppm or parts per million: Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- NR: Not regulated
- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- **EPA:** Environmental Protection Agency.
- CDC: Centers for Disease Control

Report prepared for WMMUA Greenbrook System by:

Environmental & Laboratory Services 90 1/2 West Blackwell Street Dover, NJ 07801 P: (973) 989-0010 F: (973) 989-0156

West Milford MUA – Parkway System (PWSID#: NJ1615006) Year 2011 Annual Water Quality Report

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Parkway System's drinking water surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Parkway System monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Parkway System draws its water from 1 groundwater well. This well utilizes disinfection in the treatment process. It has 32 service connections and serves approximately 115 people per day.

Results of Monitoring For C	ontaminants in	Drinking Water
-----------------------------	----------------	----------------

Contaminant Units MCL MCLG Detected Level Detected Range Detected Potential Source Total Coliforms Present/Absent 0 3 1 0 of 12 samples were positive system, runoff from streams Copper ppm 1.3 (Action Level) 0.08 (90 in Percentile) 0 of 5 samples exceeded action limit Lead ppb 15 (Action Level) 0 1.4 (90 in Percentile) 0 of 5 samples exceeded action limit Nitrate ppm 10 10 1 1 Sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) ppb 80 NA ND 1 Sample Disinfectant Byproducts Haloacetic Acids (HAA) (2009) ppb 60 NA 2 1 Sample Disinfectant Byproducts Chromium (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; eroslon of natural deposits Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRD		res	uits of Wonitoring	The second secon	מוונט ווו בוווגוו		
Total Coliforms	Contaminant	Units	<u>MCL</u>	<u>MCLG</u>	<u>Level</u>	<u>Range</u>	Potential Source
Copper ppm 1.3 (Action Level) 1.3 0.08 (90 th Percentile) 0 of 5 samples exceeded action limit 1.4 (90 th Percentile) 0 of 5 samples exceeded action limit 1 sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) ppb 80					<u>Detected</u>		
Absent Samples Samples Severe positive System, runoff from streams	Total Coliforms	Present/	0	0	<1	0 of 12	
Copper ppm 1.3 (Action Level) 1.3 D.08 (90 th Percentile) 2 samples exceeded action limit 1.4 (90 th Percentile) 2 samples exceeded action limit 2 samples exceeded action limit 3 ppm 1.5 (Action Level)							
Lead ppb 15 (Action Level) 0 1.4 (90 th Percentile) samples exceeded action limit 1.5 (Action Level) 0 1.4 (90 th Percentile) samples exceeded action limit 1.5 (Action Level) 0 1.4 (90 th Percentile) 1.5 (Action Level)						were positive	streams
Lead ppb 15 (Action Level) 0 1.4 (90 th Percentile) samples exceeded action limit Nitrate ppm 10 10 10 1 1 Sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) ppb 60 NA 2 1 Sample Disinfectant Byproducts (HAA) (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits. Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.	Copper	mqq	1.3 (Action	1.3	0.08 (90 th	0 of 5	
Lead ppb 15 (Action Level) 0 1.4 (90 th Percentile) 0 of 5 samples exceeded action limit nousehold plumbing. Nitrate ppm 10 10 1 1 Sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) ppb 80 NA ND 1 Sample Disinfectant Byproducts (HAA) (2009) ppb 60 NA 2 1 Sample Disinfectant Byproducts (HAA) (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits. Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microhes.					Percentile)		household plumbing.
Lead ppb 15 (Action Level) 0 1.4 (90 th Percentile) 0 of 5 samples exceeded action limit Nitrate ppm 10 10 1 1 Sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) ppb 80 NA ND 1 Sample Disinfectant Byproducts Haloacetic Acids (HAA) (2009) ppb 60 NA 2 1 Sample Disinfectant Byproducts Chromium (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.			,				
Nitrate ppm 10 10 1 1 Sample exceeded action limit not septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Ppb 2000 2000 6 1 Sample Nousehold plumbing. Percentile) samples exceeded action limit not sex exce	Lood	nnh	15 (Action Level)	<u> </u>	1.4.(90 th		Corrosion of
Nitrate ppm 10 10 10 1 1 Sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) Ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes	Leau	ppn	15 (Action Level)			1	
Nitrate ppm 10 10 1 1 Sample Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits. Trihalomethanes (THMs) (2009) ppb 80 NA ND 1 Sample Disinfectant Byproducts Haloacetic Acids (HAA) (2009) ppb 60 NA 2 1 Sample Disinfectant Byproducts Chromium (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microhes.	l ·				1 Crocritic)	exceeded	
Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Barium (2009) Ppb 2000 Ppb Ro NA ND 1 Sample Disinfectant Byproducts Disinfectant Byproducts To NA Ppb Sample Disinfectant Byproducts Disinfectant Byproducts Disinfectant Byproducts To NA Ppb Disinfectant Byproducts Discharge from steel and pulp mills; erosion of natural deposits Discharge from steel and pulp mills; erosion of natural deposits Discharge from steel and pulp mills; erosion of natural deposits Naturally occurring Ore Chlorine Residual Ppm MRDL MRDLG NABLG O.43 O.01 – 1.75 Water additive used to control microhes.							
Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Barium (2009) Ppb 2000 ROD NA ND 1 Sample Disinfectant Byproducts NA 2 1 Sample Disinfectant Byproducts 1 Sample Disinfectant Byproducts Disinfectant Byproducts A Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) Ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual Ppm MRDL MRDLG O.43 O.01 – 1.75 Water additive used to control microbes.	Nitrate	ppm	10	10	1	1 Sample	
Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Barium (2009) Ppb 2000 MRDL MRDL Of natural deposits.							
Trihalomethanes (THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Barium (2009) Ppb 2000 MRDL NA ND 1 Sample Disinfectant Byproducts 1 Sample Naturally occurring Ore Naturally occurring Ore Chlorine Residual Disinfectant Byproducts 1 Sample Disinfectant Byproducts O is a sample Disinfectant Byproducts Disinfectant Byproducts O is a sample O is a sample Disinfectant Byproducts O is a sample O is a sample Disinfectant Byproducts O is a sample O is a sample O is a sample Disinfectant Byproducts O is a sample O i							
(THMs) (2009) Haloacetic Acids (HAA) (2009) Chromium (2009) Byproducts NA 1 Sample Disinfectant Byproducts Chromium (2009) Ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) Ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual Ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.	Tribalamethanaa	nnh	90	NΛ	ND	1 Sample	
Haloacetic Acids (HAA) (2009) Chromium (2009) ppb 100 100 3 1 Sample Disinfectant Byproducts Byproducts Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.	2	ppp	00	INA	IND	1 Gampie	
(HAA) (2009) Chromium (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.			60	NΙΛ	2	1 Sample	
Chromium (2009) ppb 100 100 3 1 Sample Discharge from steel and pulp mills; erosion of natural deposits Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.		ppp	00·	INA	2	1 Gample	
Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.			400	100	2	1 Sample:	
Barium (2009) ppb 2000 2000 6 1 Sample Naturally occurring Ore Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.	Chromium (2009)	bbp	100	100	J	i Sample	and pulp mills; erosion
Chlorine Residual ppm MRDL MRDLG 0.43 0.01 – 1.75 Water additive used to control microbes.							
Chiloffile Residual ppth WINDL WINDLO 0.40 control microbes.	Barium (2009)	ppb	2000	2000	6	1 Sample	Naturally occurring Ore
control microhes.	Chlorine Residual	mag	MRDL	MRDLG	0.43	0.01 – 1.75	
1 · I I I · I · I · I · I · · I · · · ·		1-1	4	4			control microbes.

Other Substances: These are considered Secondary Contaminants and are not considered a health risk.

They can affect taste, odor or color of your drinking water.

<u>Contaminant</u>	<u>Units</u>	<u>Detected Limits</u>	Range	Secondary MCL
Sodium (2009)	ppm	16	NA	50
Sulfate (2009)	ppm	10	NA	250
Chloride (2009)	ppm	12	NA.	250

Health Effects of Detected Contaminants:

<u>Barium</u>: Barium is a naturally occurring ore used in a variety of manufactured goods. The EPA has found that in some people, short exposure to Barium in exceedence of the MCL can cause gastrointestinal disturbances and muscle weakness. Long term exposure to barium at levels above the MCL may cause high blood pressure.

<u>Chloride:</u> Chloride occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations chloride can cause Diarrhea in some people.

<u>Chlorine:</u> Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

<u>Chromium:</u> Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.

<u>Coliform Bacteria/E-Coli:</u> Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Haloacetic Acids:</u> Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

<u>Lead:</u> If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Nitrate:</u> Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

<u>Trihalomethanes:</u> Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550.

The source water assessment performed on the Parkway System's well-water sources determined the following:

Source Name	<u>Pathogens</u>	<u>Nutrients</u>	<u>Pesticides</u>	<u>VOCs</u>	<u>Inorganics</u>	Radio- nuclides	<u>Radon</u>	<u>DBPs</u>
	Ratings L / M / H							
1 Well*	1	1	1	1	1	1	1	1

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. The Parkway System does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- -90th Percentile: 90% of samples are equal to or less than the number in the chart.
- **Action Level:** The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- RMCL or Recommended Maximum Contaminant Level: recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- <u>- ppb or parts per billion:</u> Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- ppm or parts per million: Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- NR: Not regulated
- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- EPA: Environmental Protection Agency.
- CDC: Centers for Disease Control

Report prepared for WMMUA Parkway System by:

P: (973) 989-0010 F: (973) 989-0156

West Milford MUA – Awosting System (PWSID#: NJ1615012) <u>Year 2011 Annual Water Quality Report</u>

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Awosting System's drinking water surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Awosting System monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Awosting System draws its water from 4 groundwater wells. One pair of wells utilizes corrosion control and disinfection in the treatment process, and the other pair uses iron removal and disinfection in the treatment process. It has 185 service connections and serves approximately 633 people per day.

Results of Monitoring For Contaminants in Drinking Water

Contaminant	Units	MCL	MCLG	Level	1	Dotantial Sauras
Oomammark	Offics	MCL	MOLG	Detected	<u>Range</u>	Potential Source
Total Coliforms	Present/ Absent	0	0	<1	0 of 12 samples were positive	Leaking septic system, runoff from streams
Copper (2009)	ppm	1.3 (Action Level)	1.3	0.4 (90 th Percentile)	0 of 10 samples exceeded action limit	Corrosion of household plumbing.
Lead (2009)	ppb	15 (Action Level)		<2.0 (90 th Percentile)	0 of 10 samples exceeded action limit	Corrosion of household plumbing.
Nitrate	ppm	10	10	ND	2 Samples	Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits.
Fluoride (2009)	ppm	4	4	0.7	2 Samples	Naturally Occurring Ore.
Trihalomethanes (THMs)	ppb	80	NA	1	2 Samples	Disinfectant Byproducts
Haloacetic Acids (HAAs)	ppb	60	NA	0.1	2 Samples	Disinfectant Byproducts
Chlorine Residual	ppm	MRDL 4	MRDLG 4	0.08	0.01 – 0.17	Water additive used to control microbes.

Other Substances: These are Secondary Contaminants and are not considered a health risk. They can affect taste, odor or color of your drinking water

<u>Contaminant</u>	<u>Units</u>	<u>Detected Limits</u>	<u>Range</u>	Secondary MCL
Sodium (2009)	ppm	28.5	20-37	50
Sulfate (2009)	ppm	10.5	10-11	250
Chloride (2009)	ppm	89	NA	250

Health Effects of Detected Contaminants:

<u>Chloride</u>: Chloride occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations chloride can cause Diarrhea in some people.

<u>Chlorine:</u> Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

<u>Coliform Bacteria/E-Coli:</u> Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Haloacetic Acids</u>: Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

<u>Lead:</u> If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Nitrate:</u> Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

<u>Trihalomethanes:</u> Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550.

The source water assessment performed on the Awosting System well-water sources determined the following:

Source Name	<u>Pathogens</u>	<u>Nutrients</u>	<u>Pesticides</u>	<u>VOCs</u>	Inorganics	Radio- nuclides	Radon	<u>DBPs</u>
	Ratings L / M / H							
4 Wells*	2 / 2	2/1/1	4	4	4	4	4	4

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. Awosting System does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- 90th Percentile: 90% of samples are equal to or less than the number in the chart.
- <u>- Action Level:</u> The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- <u>- RMCL or Recommended Maximum Contaminant Level:</u> recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- <u>- ppb or parts per billion:</u> Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- <u>- ppm or parts per million:</u> Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- NR: Not regulated
- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- EPA: Environmental Protection Agency.
- CDC: Centers for Disease Control

Report prepared for WMMUA Awosting System by:

Environmental & Laboratory Services
90 1/2 West Blackwell Street
Dover, NJ 07801
P: (973) 989-0010

F: (973) 989-0156

West Milford MUA – Crescent Park System (PWSID#: NJ1615014) <u>Year 2011 Annual Water Quality Report</u>

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Crescent Park System's drinking water surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Crescent Park System monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Crescent Park draws its water from 2 groundwater wells. These wells utilize corrosion control and disinfection in the treatment process. It has 206 service connections and serves approximately 700 people per day.

Results of Monitoring For Contaminants in Drinking Water

		uits of Monitoring	The second secon	ants in Dillikii	ig vvater	
<u>Contaminant</u>	<u>Units</u>	MCL_	MCLG	<u>Level</u>	<u>Range</u>	Potential Source
				<u>Detected</u>		
Total Coliforms	Present/	0	0	<1	0 of 12	Leaking septic
•	Absent				samples	system, runoff from
					were positive	streams
Copper (2009)	ppm	1.3 (Action	1.3	0.8 (90 th	0 of 9	Corrosion of
		Level)		Percentile)	samples	household plumbing.
					exceeded	
					action limit	
Lead (2009)	ppb	15 (Action Level)	0	1.7 (90 th	0 of 9	Corrosion of
				Percentile)	samples	household plumbing.
					exceeded	
N !: L		40			action limit	
Nitrate	ppm	10	10	0.8	2 Samples	Runoff from fertilizer
						use; leaching from septic tanks; erosion
						of natural deposits.
Trihalomethanes	ppb	80	NA	1.2	2 Samples	Disinfectant
(THMs) (2009)	PPS		14/1	1.2	2 Gamples	Byproducts
Haloacetic Acids	ppb	60	NA	0.7	2 Samples	Disinfectant
(HAAs) (2009)	ppb	00	INA	0.7	2 Samples	Byproducts
Chromium (2009)	nnh	100	100		0.0	
Cilioitiidiii (2009)	ppb	100	100	2	2 Samples	Discharge from steel and pulp mills; erosion
		•				of natural deposits
Barium (2009)	ppb	2000	2000	1	2 Samples	Naturally occurring Ore
				0.10	•	12/2
Chlorine Residual	ppm	MRDL	MRDLG	0.19	0.07 – 0.37	Water additive used to control microbes.
		4	4			control microbes.

Other Substances:

These are considered Secondary Contaminants and are not considered a health risk. They can affect taste, odor or color of your drinking water.

Contaminant	<u>Units</u>	<u>Detected Limits</u>	Range	Secondary MCL
Sodium (2009)	ppm	10	3-17	50
Sulfate (2009)	ppm	115	8-222	250
Chloride (2009)	ppm	26	-50	250

Health Effects of Detected Contaminants:

Barium: Barium is a naturally occurring ore used in a variety of manufactured goods. The EPA has found that in some people, short exposure to Barium in exceedence of the MCL can cause gastrointestinal disturbances and muscle weakness. Long term exposure to barium at levels above the MCL may cause high blood pressure.

<u>Chloride</u>: Chloride occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations chloride can cause Diarrhea in some people.

<u>Chlorine</u>: Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

<u>Chromium:</u> Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.

<u>Coliform Bacteria/E-Coli:</u> Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Haloacetic Acids</u>: Some people who drink water containing haloacetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

<u>Lead:</u> If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Nitrate</u>: Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

<u>Trihalomethanes:</u> Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550.

The source water assessment performed on the Crescent Park System's well-water sources determined the following:

Source Name	<u>Pathogens</u>	<u>Nutrients</u>	<u>Pesticides</u>	VOCs	Inorganics	Radio- nuclides	Radon	<u>DBPs</u>
	Ratings L / M / H	Ratings L/M/H	Ratings L / M / H					
2 Wells*	1 / 1	2	2	2	2	1 / 1	1 / 1	2

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. Crescent Park System does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- 90th Percentile: 90% of samples are equal to or less than the number in the chart.
- Action Level: The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- RMCL or Recommended Maximum Contaminant Level: recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- **ppb or parts per billion:** Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- ppm or parts per million: Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- NR: Not regulated
- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- EPA: Environmental Protection Agency.
- CDC: Centers for Disease Control

Report prepared for WMMUA Crescent Park System by:

Signal State of Services

90.1/2.West Blackwell Street Dover, NJ 07801 P: (973) 989-0010 F: (973) 989-0156

West Milford MUA – Olde Milford (PWSID#: NJ1615016) Year 2011 Annual Water Quality Report

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Total Coliform Bacteria was detected at Olde Milford in 5 samples out of 33. The 5 samples occurred during the month of October, triggering a violation for which a public notice was previously issued. Olde Milford otherwise surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Olde Milford monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Olde Milford draws its water from 4 groundwater wells. These wells utilize disinfection and iron removal in the treatment process. It has 571 service connections and serves approximately 1,622 people per day.

Results of Monitoring For Contaminants in Drinking Water

<u>Contaminant</u>	<u>Units</u>	<u>MCL</u>	MCLG	<u>Level</u> <u>Detected</u>	Range	Potential Source
Total Coliforms	Present/ Absent	0	0	1	5 of 33 samples were positive	Leaking septic system, runoff from streams
Copper (2009)	ppm	1.3 (Action Level)	1.3	0.5 (90 th Percentile)	0 of 10 samples exceeded action limit	Corrosion of household plumbing.
Lead (2009)	ppb	15 (Action Level)	0	9 (90 th Percentile)	0 of 10 samples exceeded action limit	Corrosion of household plumbing.
Nitrate	ppm	10	10	ND	6 Samples	Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits.
Fluoride (2009)	ppm	4	4	0.25	12 Samples	Naturally Occurring Ore.
Chromium (2009)	ppb	100	100	4	6 Samples	Discharge from steel and pulp mills; erosion of natural deposits
Barium (2009)	ppb	2000	2000	6	6 Samples	Naturally occurring Ore
Chlorine Residual	ppm	MRDL 4	MRDLG 4	0.27	ND – 1.30	Water additive used to control microbes.
Gross Alpha	pCi/L	15	0	13.6	4.37-22.1	Erosion of Natural Deposits
Total Radium	pCi/L	1	0	ND	ND-1.3	Erosion of Natural Deposits
Uranium	ug/L	30	0.	14.4	1.4-27.5	Erosion of Natural Deposits

<u>Other Substances:</u> These are considered Secondary Contaminants and are not considered a health risk.

They can affect taste, odor or color of your drinking water.

<u>Contaminant</u>	<u>Units</u>	<u>Detected Limits</u>	<u>Range</u>	Secondary MCL
Sodium (2009)	ppm	16.6	9-21	50
Sulfate (2009)	ppm	17	13-23	250
Chloride (2009)	ppm	77	36-99	250

Health Effects of Detected Contaminants:

Barium: Barium is a naturally occurring ore used in a variety of manufactured goods. The EPA has found that in some people, short exposure to Barium in exceedence of the MCL can cause gastrointestinal disturbances and muscle weakness. Long term exposure to barium at levels above the MCL may cause high blood pressure.

<u>Chloride:</u> Chloride occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations chloride can cause Diarrhea in some people.

<u>Chlorine:</u> Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

<u>Chromium:</u> Some people who use water containing chromium well in excess of the MCL over many years could experience allergic dermatitis.

<u>Coliform Bacteria/E-Coli:</u> Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Gross Alpha:</u> Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Nitrate</u>: Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Radium: Some people who drink water containing radium 226 or 228 in excess of the MCL over many years may have an increased risk of getting cancer.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

<u>Uranium:</u> Some people who drink water containing uranium in excess of the MCL over many years may have an increased risk of getting cancer and kidney toxicity.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550.

The source water assessment performed on Olde Milford's well-water sources determined the following:

Source <u>Name</u>	<u>Pathogens</u>	<u>Nutrients</u>	<u>Pesticides</u>	<u>VOCs</u>	Inorganics	Radio- nuclides	<u>Radon</u>	<u>DBPs</u>
	. Ratings L / M / H	Ratings L / M / H						
8 Wells*	7 / 1	3 / 5	8	8	4 / 4	1 / 7	8	8

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. Olde Milford does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

Definitions:

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- 90th Percentile: 90% of samples are equal to or less than the number in the chart.
- **Action Level:** The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **RMCL or Recommended Maximum Contaminant Level:** recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- **ppb or parts per billion:** Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- **ppm or parts per million:** Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- pCi/L: Picocuries per liter
- NR: Not regulated

- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- **EPA:** Environmental Protection Agency.
- CDC: Centers for Disease Control

Report prepared for WMMUA Olde Milford by:

Environmental & Laboratory Services 90 1/2 West Blackwell Street Dover, NJ 07801 P: (973) 989-0010 F: (973) 989-0156

West Milford MUA – Bald Eagle Village (PWSID#: NJ1615018) Year 2011 Annual Water Quality Report

What's The Quality of Your Water? West Milford MUA is pleased to share this water quality report with you. This report covers January 1 through December 31, 2011. Bald Eagle Village's drinking water surpassed the strict regulations of both the State of New Jersey and the U.S. Environmental Protection Agency (EPA), which requires all water suppliers to provide reports like this every year to each customer. Bald Eagle Village monitors for many substances both regulated and unregulated.

<u>Sources of Supply:</u> Bald Eagle Village draws its water from 2 groundwater wells. These wells utilize iron & manganese removal and disinfection in the treatment process. It has 443 service connections and serves approximately 1,258 people per day.

Results of Monitoring For Contaminants in Drinking Water

Contaminant	<u>Units</u>	<u>MCL</u>	MCLG	<u>Level</u> Detected	Range	Potential Source
Total Coliforms	Present/ Absent	0	0	<1	0 of 24 samples were positive	Leaking septic system, runoff from streams
Copper (2010)	ppm	1.3 (Action Level)	1.3	0.8 (90 th Percentile)	1 of 19 samples exceeded action limit	Corrosion of household plumbing.
Lead (2010)	ppb	15 (Action Level)		5 (90 th Percentile)	0 of 19 samples exceeded action limit	Corrosion of household plumbing.
Nitrate	ppm	10	10	ND	1 Sample	Runoff from fertilizer use; leaching from septic tanks; erosion of natural deposits.
Chlorine Residual	ppm	MRDL 4	MRDLG 4	0.06	0.01 – 0.17	Water additive used to control microbes.

Other Substances:

These are considered Secondary Contaminants and are not considered a health risk. They can affect taste, odor or color of your drinking water.

	table, out, or other or your armang nater.									
<u>Contaminant</u>	<u>Units</u>	Detected Limits	<u>Range</u>	Secondary MCL						
Sodium (2009)	ppm	44	NA	50						
Sulfate (2009).	ppm	25	NA	250						
Chloride (2009)	ppm	117	NA	250						

Health Effects of Detected Contaminants:

<u>Chloride:</u> Chloride occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations chloride can cause Diarrhea in some people.

<u>Chlorine:</u> Some people who use water containing chlorine well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort.

Coliform Bacteria/E-Coli: Coliform Bacteria are common in the environment and are generally not harmful. The presence of these bacteria in drinking water is usually the result of a problem with the treatment system or the pipes that distribute the water, and indicates that the water may be contaminated with germs that may cause disease.

<u>Copper:</u> Copper is an essential nutrient, but some people who drink water that contains copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water that contains copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.

<u>Lead:</u> If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. West Milford MUA is responsible for providing high water quality, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for Drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

<u>Nitrate:</u> Nitrate in drinking water a levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

<u>Sodium:</u> Naturally occurring mineral. Sodium is essential for good health. Certain medical conditions however, require sodium intake monitoring. Excessive sodium can adversely affect high blood pressure, heart disease or diabetes. Contact your physician for further information.

<u>Sulfate:</u> Sulfate occurs naturally in water and is monitored as a secondary contaminant. Secondary contaminants are aesthetic (taste and odor) rather than health risks; however, in high concentrations sulfate can cause Diarrhea in some people.

Special Considerations Regarding Children, Pregnant Women, Nursing Mothers, and Other Vulnerable Population: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can particularly at risk from infections. These people should seek advice from their health care providers. EPA/CDC guidelines on appropriate means to lesson the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791)

Source Water Assessment:

The New Jersey Department of Environmental Protection (NJDEP) has completed and issued the Source Water Assessment Report and Summary for this public water system, which is available at www.state.nj.us/dep/swap/ or by contacting the NJDEP, Bureau of Safe Drinking Water at 609-292-5550.

The source water assessment performed on Bald Eagle Village's well-water sources determined the following:

Source Name	Pathogens	<u>Nutrients</u>	<u>Pesticides</u>	VOCs	Inorganics	Radio- nuclides	Radon	<u>DBPs</u>
	Ratings L / M / H	Ratings L/M/H	Ratings L / M / H	Ratings L / M / H				
2 Wells*	1 / 1	2	2	2	2	1 / 1	1 / 1	2

^{*}The numbers indicated represent the number of wells in that category's ratings.

Ratings: (L= Low, M= Medium, H = High)

A public water system's susceptibility rating (L for low, M for medium or H for high) is a combination of two factors. H, M, and L ratings are based on the potential for a contaminant to be at or above 50% of the Drinking Water Standard or MCL (H), between 10 and 50% of the standard (M) and less than 10% of the standard (L).

If a system is rated highly susceptible for a contaminant category, it does not mean a customer is or will be consuming contaminated drinking water. The rating reflects the potential for contamination of source water, not the existence of contamination.

Public water systems are required to monitor for regulated contaminants and to install treatment if any contaminants are detected at frequencies and concentrations above allowable levels.

NJDEP found the following **potential** contaminant sources within the source water assessment areas for your water: Nutrients, Pesticides, Inorganics, Radon, Radionuclides, and Disinfection Byproducts. Bald Eagle Village does chlorinate the water from their well and therefore runs risk of Disinfection Byproducts. The System will test for Radionuclides, Pathogens, Nutrients, VOCs and lead/copper, as prescribed by the NJDEP. After reviewing the results, the NJDEP will make an assessment of water quality to determine if any additional testing or treatment is necessary. If you have questions regarding the source water assessment report or summary please contact the **Bureau of Safe Drinking Water at swap@dep.state.nj.us** or 609-292-5550.

The following is a list of the most common definitions used in Annual Water Quality Reports. Not all of the definitions apply to your report:

- 90th Percentile: 90% of samples are equal to or less than the number in the chart.
- **<u>- Action Level:</u>** The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.
- MCL or Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- MCLG or Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- RMCL or Recommended Maximum Contaminant Level: recommended maximum level for secondary contaminants. Secondary contaminants are not believed to be a health risk.
- **ppb or parts per billion:** Micrograms per liter (ug/L). One part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.
- <u>- ppm or parts per million:</u> Milligrams per liter (mg/L). One part per million corresponds to one minute in two years, or a single penny in \$10,000.
- NR: Not regulated
- NA: Not applicable
- ND: Not detectable at testing limits
- su: Standard Units
- NJDEP: New Jersey Department of Environmental Protection
- EPA: Environmental Protection Agency.
- CDC: Centers for Disease Control

Report prepared for WMMUA Bald Eagle Village by:

Environmental & Laboratory Services.
90:1/2 West Blackwell Street
Dover, NI 07801
P: (973) 989-0010
F: (973) 989-0156